Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate
نویسنده
چکیده
Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2 can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8)×1014 molecule cm−3] oxidation by O3 [(1.2–12)×1014 molecule cm−3] was determined to be (1.4±0.3)×10−7 using the BET area as the reactive area and (7.7±1.6)×10−4 using the geometric area. A twostage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.
منابع مشابه
Experimental Examination of Sulfur Dioxide Dry Removal from a Mixture of Gases by Calcium Oxide, Calcium Carbonate and Dolomite
This paper refers to an experiment of SO2 absorption to the three different sorbents: calcium-oxide (CaO), calcium-carbonate (CaCO3) and dolomite (CaMg(CO3)2). In the reactor under the condition of oxidation atmosphere with the mass of sorbent (sample) of 100 g with fractional composition of 500-700µm, the gas temperatur...
متن کاملA laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles
[1] The heterogeneous uptake and oxidation of SO2 on particle surfaces representative of mineral dusts found in the atmosphere have been investigated. These particles include metal oxides (e.g., hematite, corundum), calcite, and China loess. FT-IR spectroscopy was used to characterize surface-bound species following exposure to gaseous SO2. It was found that SO2 irreversibly adsorbs as sulfite ...
متن کاملEffect of CO2 Partial Pressure on the Thermal Decomposition Kinetics of Zinc Carbonate Hydroxide (TECHNICAL NOTE)
In this work, the effect of carbon dioxide partial pressure on the calcination kinetics of high purity zinc carbonate hydroxide has been studied. Non-isothermal analysis has been performed on samples at different CO2 partial pressures by TGA and DTA. It has been found that the calcination behaviour of this material corresponds to the shrinking core model and the reaction mechanism is phase boun...
متن کاملHeterogeneous oxidation of sulfur dioxide on calcium carbonate
L. Li, Z. M. Chen, Y. H. Zhang, T. Zhu, J. L. Li, and J. Ding State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, China Received: 18 October 2005 – Accepted: 9 December 2005 – Published: 17 January 2006 Correspondence to: Y. H. Zhang ([email protected]) © 2006 Author(s). This work is licensed under a ...
متن کاملTHE ACTIVATION OF CARBON DIOXIDE AT A MAGNESIUM (1 00) SURFACE THE ROLE OF OXYGEN TRANSIENTS
X-ray photoelectron and high resolution electron energy loss spectroscopic (XPS-HREELS) studies have shown that the adsorption of carbon dioxide at Mg(100) surfaces at 80K is followed by a dissociative reaction leading to the formation of a metastable surface carbonate above 80K. The formation of a carbonate species is proposed to proceed through oxidation of C0 (g) by an active oxygen su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006